Nouvelles Approches en RAdiothérapie (NARA)

Synthèse activités

Radiotherapy (RT) is one of the most frequently used methods for cancer treatment (above 50% of patients will receive RT). Despite remarkable advancements, the dose tolerances of normal tissues continue being the main limitation in RT. Finding novel approaches that allow increasing normal tissue resistance is of utmost importance. This would make it possible to escalate tumour dose, resulting in an improvement in cure rate. Along this line, the team New Approaches in Radiotherapy (NARA) works on the exploration on novel  RT techniques.  NARA is a team pioneering the conception and development of innovative methods based on the use of the spatial fractionation of the dose. This strategy has already shown a remarkable reduction in side effects of the radiation.

Since we do not believe in frontiers, NARA was born in 2013 with an interdisplinary character.  We work at the interphase between medical physics, computing (Monte Carlo simulations), and radiobiology.

Participants IMNC

Yolanda Prezado : chargée de Recherche CNRS, section 01

Membres permanents
Yolanda Prezado : chargée de Recherche CNRS, section 01
Rachel Delorme : chargée de Recherche CNRS, section 01

Membres non permanents
Consuelo Guardiola, post-doctorante
Wilfredo Gonzalez, post-doctorant

Anciens membres
Immaculada Martinez-Rovira, post-doctorante (2013-2015), maintenant Marie-Curie fellow à l'Universidad Autonoma de Barcelona
Morgane dos Santos, postdoc (2013-2015),  maintenant  membre permanent à l'Institut de Radioprotection et Sûreté Nucléaire (Fontenay-Aux-Roses, France)
Cecile Peucelle, Ph.D. Student (2013-2016), maintenant physicienne médicale au Centre de Protonthérapie Antoine Lacassagne (Nice, France)

Mots clés

Radiothérapie, hadronthérapie, dosimétrie, tumeurs radioresistants, mini-faisceaux, nanoparticules

Axes de recherche

Currently, NARA's forces are concentrated in the following projects:

  1. Exploration of X-rays minibeam radiation therapy using conventional equipment. More info at
  2. Spatial fractionation of the dose in charged particle therapy : proton and heavy ions minibeam radiation therapy. More info at
  3. Very high energy electron therapy.


  •  I. Martinez-Rovira, W. Gonzalez, S. Brons and Y. Prezado,  Carbon and oxygen minibeam radiation therapy: an experimental dosimetric evaluation" , Med. Phys. In press
  • W. Gonzalez, C. Peucelle and Y. Prezado, Theoretical dosimetric evaluation of carbon and oxygen minibeam radiation therapy, Med. Phys. 2017-05-26
  • C. Guardiola, C. Peucelle and Y. Prezado, Optimization of the mechanical collimation for minibeam generation in Proton MiniBeam Radiation Therapy, Med. Phys. 2017
  • C. Peucelle, C. Nauraye, A. Patriarca, E. Hierso, N. Fournier-Bidoz, I. Martinez-Rovira and Y. Prezado, Proton minibeam radiation therapy: Experimental dosimetry evaluation, Med. Phys. 42, 7108-7113.
  • C. Peucelle, I. Martinez-Rovira and Y. Prezado, Spatial fractionation of the dose using neon and heavier ions: A Monte Carlo study. Med. Phys. 42, 5928-5936 (2015).
  • Y. Prezado, P. Deman, P. Varlet, G. Jouvion, S. Gil, C. Le Clec’ H,  H. Bernard, G. Le Duc  and S. Sarun, Tolerance to Dose Escalation in Minibeam Radiation Therapy Applied to Normal Rat Brain: Long-Term Clinical, Radiological and Histopathological Analysis, Rad. Research 184 (2015).
  • C. Peucelle, I. Martinez-Rovira and Y. Prezado, Spatial fractionaction of the dose using Neon and heavier ions : a Monte Carlo study, Med. Phys. 42, 5928-36 (2015).
  • I. Martinez-Rovira, G. Fois, and Y. Prezado, New approaches in Grid therapy by using non-conventional sources, Med. Phys.  42, 685 (2015).