On reprend les observations précédentes à un niveau un peu plus formel, et sur les lagragiens plutôt que les équations de mouvement - beaucoup mieux adaptées à l'analyse des invariances (c'est tout l'intérêt du formalisme lagragien). Paradigme : lagragiens de champs scalaires.

Symétrie discrète spontanément brisée

Exemple : champ $\phi(x)$ scalaire, réel (neutre, pas chargé).

\[
\begin{align*}
\mathcal{L} &= \frac{1}{2} \left(\partial_\mu \phi \partial^\mu \phi \right) - V(\phi) \\
V(\phi) &= \frac{1}{4!} (\phi^2 + a)^2
\end{align*}
\]

C'est le lagragien le plus général, de degré 4 (au delà pas renormalisable) qui soit invariant pour rapport à la transformation globale discrète :

\[
\phi(x) \rightarrow \phi'(x) = -\phi(x)
\]

Densité hamiltonienne $\mathcal{H}(x)$?

\[
\mathcal{H} = \pi \partial_\phi - \mathcal{L}
\]

\[
\pi = \frac{\partial \mathcal{L}}{\partial (\partial_\phi \phi)} = \partial_\phi \phi = \phi
\]

\[
\mathcal{H}(x) = \frac{1}{2} \left(\dot{\phi}^2 + \nabla \phi \cdot \nabla \phi \right) + V(\phi)
\]

toujours > 0

Si on veut une théorie quantique avec un vide - état fondamental (toute la quantique depuis Bohr est faite pour ça), cet hamiltonien pas quantique doit avoir un état d'équilibre stable.

$\rightarrow \lambda > 0$

\mathcal{H} minimum (équilibre stable) \rightarrow terme cinétique nul $\rightarrow \phi_0(x) = \sigma$, constante, champ uniforme

\[
\frac{\partial V}{\partial \phi} \bigg|_\sigma = 0 \quad , \quad V(\sigma) = \text{minimum}
\]
1er cas \(a > 0 \)

\[V(u) \]

\[\lambda \frac{a^2}{4!} \]

\[\nabla u \]

\[\sigma = 0 \]

et donc pour la solution d'équilibre stable

\[\varphi_0(x_n) \rightarrow \varphi(x_n) = \varphi_0(x_n) \]

la solution a encore la symétrie des équations.

Petits mouvements : \(\varphi(x_n) = \varphi_0(x_n) + x(x_n) \)

soit \(\varphi(x_n) = x(x_n) \)

\[V(x) = \frac{\lambda}{4!} (x^2 + u)^2 \]

\[= \frac{\lambda a}{12} x^2 + \frac{\lambda a}{4!} x^4 + \frac{\lambda a}{4!} a^2 \]

inutile

d'où la densité lagrangienne pour les petites excitations au voisinage de l'équilibre

\[\varphi_x^2 = \frac{1}{2} \frac{d^2}{dx^2} x^2 \]

\[- \frac{\lambda a}{4!} x^2 \]

à comparer au lagrangien libre du champ scalaire massif \(p.112 \)

\[\frac{1}{2} \frac{d^2}{dx^2} x^2 \]

On interprète donc \(\varphi_x^2 \) comme un lagrangien

- pour particules de masse \(m^2 = \frac{\lambda a}{6} > 0 \)

- en auto-interaction \(\varphi_x^2 \text{int} = - \frac{\lambda}{4!} x^4 \)

- invariant par rapport à la transformation interne globale

\[x(x_n) \rightarrow x'(x_n) = - x(x_n) \]

Ce ne casse pas 3 pattes à 1 canard.

2\(^2\) cas \(a < 0 \)

\[V(u) \]

\[-V(a) \]

\[V(a) \]

\[\sigma = \pm \sqrt{|a|} \]

Catastrophe ! (littéralement)

La solution d'équilibre stable,

\[\varphi_0(x_n) = \sigma \]

n'est pas invariante

dans : \(\varphi(x_n) \rightarrow \varphi'(x_n) = - \varphi(x_n) \)
mais le fait que \mathcal{L} ait cette symétrie se traduit quand même par l'existence de 2 solutions dégénérées.

Analogie + concrète : réseau de routes le plus court entre 4 villes disposées au carré ? (ou bulle de savon entre 4 fils parallèles, en carré, ?)
les équations du problème sont invariantes par rapport aux transformations de $C_4 v$

Mais les solutions (si il en a 2, dégénérées) n'ont plus cette symétrie ; mais elles ont encore une symétrie plus faible, par rapport à C_2.
Autre : choix d'une case par la boule à Monte Carlo.

Il y a un autre extremum (maximum) $\Phi_0(x_0) = 0$.
Signification de cet équilibre instable ?
petits mouvements $\frac{\partial \Phi}{\partial x} x \frac{\partial \Phi}{\partial x} = \frac{\lambda}{\Lambda} x^2 + O(x^4)$
$\Rightarrow m^2 = \frac{\lambda}{\Lambda} < 0$!
les excitations sont correspondre à des particules de masse imaginaire, tachyons

Signification des minimums ?
par exemple $\Phi(x_0) = \sqrt{|x_0|} + x(x_0)$

$$\begin{align*}
\frac{\partial \Phi}{\partial x} x \frac{\partial \Phi}{\partial x} &= \frac{\lambda}{\Lambda} (|x_0| + 2 \sqrt{|x_0|} x + x^2 + a)^2
\n\n\Phi(x_0) &= \frac{\lambda}{\Lambda} (|x_0| x^2 + 4 \sqrt{|x_0|} x^3 + x^4)
\n\end{align*}$$

$$\frac{\partial \Phi}{\partial x} x \frac{\partial \Phi}{\partial x} = \frac{\lambda}{\Lambda} x^2 - \frac{\Lambda}{6} x^3 - \frac{\sqrt{\Lambda}}{6} x^3 - \frac{\Lambda}{4!} x^4$$

$\Phi(x_0) = \frac{\lambda}{\Lambda} x^2 + \frac{\Lambda}{6} x^3 + \frac{\Lambda}{4!} x^4$

$\Phi(x_0) = \frac{\lambda}{\Lambda} x^2 + \frac{\Lambda}{6} m^2 x^2 + \frac{\Lambda}{3!} x^3 + \frac{\Lambda}{4!} x^4$
On en interprète donc les excitations comme des états de particules scalaires de masse

\[h^2 = \frac{\lambda |a|}{3} > 0 \] 0.K.

en auto-interaction.

Mais \(S_x \) n'est plus invariant par rapport à \(\mathcal{C}(x) \rightarrow \mathcal{C}(x) = -\mathcal{C}(x) \)

(cela qui reflète la non invariance du fondamental)

Au vu de \(S_x \), dans un monde en proie à la crise de l'énergie, c'est à dire de physiciens limites pour des raisons budgétaires aux excitations du pouvoir, s'apercevoir que ce \(S_x \) descend d'un \(S_x \) invariant nécessiterait une bonne dose d'imagination. Mais il subsiste quand même un ferment pour l'intuition dans des vestiges de l'invariance perdue, à savoir une relation très particulière entre masse et constantes de couplage :

\[\frac{\partial^2}{\partial q^2} = -3m^2 \]

(categorie de relations qui plus tard assureront la renormalisabilité des lagragiengis à invariance de jauge cachée).

Question opportune : le fondamental classique, pour de simples raisons heisenberg-wiennes est en général inaccessible aux états quantiques (e.g. oscillateur harmonique). Les fondamentaux quantiques ont-ils donc un rapport avec ces fondamentaux classiques que l'on discute ?

Exemple : Cas de symétrie discrète brisée pour un système à un seul degré de liberté, la molécule N\(2\). Modèle \(\rightarrow \) potentiel \(V(q) \) senti par l'atome \(N \) avec 2 états d'équilibre classiques \(q = \pm \sqrt{|a|} \)

en quantique, chaque équilibre est approximable par le fondamental d'oscillateurs harmoniques centrés en \(q = \pm \sqrt{|a|} \)
soit \(|\sqrt{\alpha} i\rangle \) et \(|-\sqrt{\alpha} i\rangle \)

mais l'effet tunnel \(\rightarrow \) le fondamental du système est
\[
|0\rangle = \frac{1}{\sqrt{2}} \left(|\sqrt{\alpha} i\rangle + |-\sqrt{\alpha} i\rangle \right)
\]

Le conventionnel pour des kets, dépend de leur choix de phase relative

aucun rapport entre fondamental quantique et équilibres classiques ! Bizarre...

Autre exemple : cas à infinité de degrés de liberté (champ)

soit le champ
\[
\varphi(x, t=0) = \begin{cases} \sqrt{\alpha} & \text{si } |x|^2 \leq R \\ -\sqrt{\alpha} & \text{si } |x|^2 > R \end{cases}
\]

Alors \(V(\varphi) \rightarrow 0 \) à peu près partout, mais pas du tout dans \(d\varphi \) de la traversée de la sphère, qui donne une contribution à l'énergie totale \(\propto \) surface \(\propto R^2 \).

Passer de la configuration
\[
\varphi(x, t=0) = -\sqrt{\alpha} \quad \text{partout} \quad (R=0)
\]
à la configuration
\[
\varphi(x, t=0) = +\sqrt{\alpha} \quad \text{partout} \quad (R=3\sqrt{\alpha})
\]

exige un franchissement de barrière infinie lorsque le volume \(V \rightarrow \infty \). Pas d'effet tunnel.

Conclusion : pour un système à infinité de degrés de liberté on peut espérer que la solution d'équilibre classique soit une bonne approximation du fondamental (violet) classique.
Symétrie continue spontanément brisée

Exemple le plus simple : une symétrie abélienne globale sur un champ scalaire complexe (doublet)

\[
\begin{align*}
\mathcal{L} &= \partial \phi^* \partial \phi - V(\phi) \\
V(\phi) &= \frac{\lambda}{6} (\phi^* \phi - \eta^2)^2
\end{align*}
\]

Laugure notre intérêt pour le cas
\[\alpha = -\eta^2 < 0\]

invariant par rapport à la transformation interne globale:

\[\phi(x) \rightarrow \phi'(x) = e^{i\alpha} \phi(x)\]

Infinité de solutions correspondant à des états d'équilibre stable classiques

\[\phi_0(x) = \eta \, e^{i\delta}\]
\[\delta \in [0, 2\pi]\]
dégénérées, séparées par des barrières infinies.

Analogie + concrète : le flambage (ne pas confondre avec la roulette), figure d'équilibre d'une poutre comprimée par ses extrémités.

Autre : ferromagnétique au dessous de la température de transition

- une au centre d'un cercle de fourrage
Petites excitations, qu'en est-il ?

il faut d'abord choisir une solution stable, e.g.

\[\mathcal{S} = 0 \]

soit \(\psi_0(x) = \eta \) (réels)

Petits mouvements : \(\psi(x) = \eta + \frac{1}{i \hbar} \left\{ \mathcal{X}_1(x) + i \mathcal{X}_2(x) \right\} \)

\[\begin{align*}
\partial_t \psi & = (D_{x_1} - i \partial_{x_2}) (D_{x_1} + i \partial_{x_2}) \psi \\
\psi^* \psi & = (\eta + \frac{1}{\hbar} \mathcal{X}_1)^2 + \frac{1}{2} \mathcal{X}_2^2 \\
V(\psi) & = \frac{1}{6} \left(\sqrt{2} \hbar \eta \mathcal{X}_2 + \frac{1}{2} \mathcal{X}_1^2 + \frac{1}{2} \mathcal{X}_2^2 \right)^2 \\
L_x & = \frac{1}{2} \partial_{x_1} \partial_{x_1} \mathcal{X}_1 - \frac{1}{2} \frac{2}{3} \hbar \eta^2 \mathcal{X}_1^2 \\
& + \frac{1}{2} \partial_{x_2} \partial_{x_2} \mathcal{X}_2 \\
& - \frac{\sqrt{6}}{6} \hbar \eta \mathcal{X}_1 \mathcal{X}_2 - \frac{2}{12} \hbar \eta \mathcal{X}_1 \mathcal{X}_2^2 + \frac{1}{24} \mathcal{X}_1^2 \mathcal{X}_2^2 + \frac{1}{24} \mathcal{X}_2^4
\end{align*} \]

Conclusion :
- un champ scalaire réel \(m_1^2 = \frac{2}{3} \hbar \eta^2 \) y'a - bon !
- un champ scalaire réel \(m_2 = 0 \) !
- le tout interagissant.

La symétrie est brisée :

- \(\psi_0(x) = \eta \) n'est pas du tout invariant dans la transformation de Jauge globale \(\psi(x) \rightarrow e^{ix} \psi(x) \)

- ce ça traduit par un \(L_x \) pas du tout invariant dans les transformations de \(U(1) \) sur \(\mathcal{X}_1 \) et \(\mathcal{X}_2 \)

- c'est la cassure de symétrie, \(\eta \neq 0 \), qui assure une masse \(m_2^2 = \frac{2}{3} \hbar \eta^2 \) non nulle au boson \(\mathcal{X}_2 \)
La nullité de m^2 n'est pas du tout accidentelle. Petites excitations de $X^2 \rightarrow$ glissement progressif vers l'oscillation de phase de

$$\psi(x) = \eta + i \frac{\lambda}{\sqrt{2}} \chi(x) = \eta \ e^{i \frac{\lambda}{\sqrt{2}} \chi(x)}$$

qui ne changent pas V (invariant de phases $U(1)$), il n'y a donc pas de terme de masse correspondant

$$\frac{\partial^2 V}{\partial \chi^2} \bigg|_{\eta} = 0 \quad \text{(qui donnerait une contribution } O \chi^2 \text{)}$$

Mais par contre le terme cinétique est toujours responsable de la présence d'une barrière infinie pour passer de

$$\psi_0(x) = \eta \quad \text{à} \quad \psi(x) = \eta \ e^{i \phi}$$

Le champ scalaire réel $X^2(x)$ est appelé boson de Goldstone.

L'inévitable nullité de sa masse, résultant de la brisure d'une symétrie continue globale est un cas particulier du théorème de Goldstone.

Théorème de Goldstone

À la partie plus ou moins complète d'une symétrie continue (des équations du mouvement) dans une solution stable, est inévitablement associée la manifestation d'un certain nombre (non nul) de types de bosons de masse nulle (les bosons de Goldstone).

Soit un n-plat de champs scalaires réels

$$\psi(x) = \begin{pmatrix} \psi_1(x) \\ \vdots \\ \psi_n(x) \end{pmatrix}$$
de l'écriture
\[L = \frac{1}{2} \partial_t \Phi \partial_t \Phi - V(\Phi) \]
dont \(V \) est invariant par rapport aux transformations d'un groupe \(G \) à \(N \) paramètres, i.e. invariant par rapport à la transformation interne, globale, infinitésimale :
\[\Phi(x) \rightarrow \Phi'(x) = \left(I + i \frac{1}{\hbar} \nabla \cdot \omega \right) \Phi(x) \]
\(\omega \) représentatives \(n \times n \) du groupe.

\(V \) invariant \[\delta V = \frac{\partial V}{\partial \Phi_j} \delta \Phi_j = \frac{\partial V}{\partial \Phi_j} i (T_k)_{jk} \omega_k \Phi_k = 0 \quad \forall \omega_k \]
\(\rightarrow \) \(N \) équations : \[\frac{\partial V}{\partial \Phi_j} (T_k)_{jk} \Phi_k = 0 \quad , \quad \alpha \in \{1,2,...,N\}^3 \]
dont la différentiation donne :
\[\frac{\partial^2 V}{\partial \Phi_j \partial \Phi_k} (T_k)_{jk} \Phi_k + \frac{\partial V}{\partial \Phi_j} (T_k)_{jk} \Phi_k = 0 \]
On ne s'intéresse qu'aux cas où \(L \) l'hamiltonien a un minimum, donc \(V \) aussi. Alors pour cette solution d'équilibre :
\[\left. \frac{\partial V}{\partial \Phi_j} \right|_{\Phi_0} = 0 \]
donc
\[\left. \frac{\partial^2 V}{\partial \Phi_j \partial \Phi_k} \right|_{\Phi_0} (T_k)_{jk} \Phi_0 \Phi_k = 0 \]
Mais d'autre part au voisinage de cette solution, la potentiel peut s'écritre (à une translation d'origine des énergies près) :
\[V(\Phi) = \frac{1}{2} \left. \frac{\partial^2 V}{\partial \Phi_j \partial \Phi_k} \right|_{\Phi_0} \Phi_0 \Phi_0 + O(\Phi^2) \]
qui est à l'origine des termes quadratiques dans le lagrangien \(\rightarrow\) matrice de masse

\[
(M^2)_{ij} \triangleq \frac{\partial^2 V}{\partial \phi_i \partial \phi_j} |_{\phi_0}
\]

\[
(M^2)_{ij} (T_x)_{jk} \psi_{0k} = 0 \quad \alpha \in \{1, 2, \ldots, N^2\}
\]

Dans le cas où le fondamental \(\phi_0\) reste invariant par rapport aux transformations \(g \in G\) et sous groupe à \(p\) paramètres \(0 \leq p < N\), on a

\[
(T_x)_{jk} \psi_{0k} = 0 \quad , \quad \alpha \in \{1, 2, \ldots, p\}^2
\]

tandis qu'en général

\[
(T_x)_{jk} \psi_{0k} \neq 0 \quad , \quad \alpha \in \{p+1, p+2, \ldots, N^2\}
\]

Conclusion : il existe \(N-p\) vecteurs colonnes \((T_x)_{jk} \psi_{0k}\) non nuls tels que

\[
(M^2)_{ij} (T_x)_{jk} \psi_{0k} = 0 \quad ;
\]

la matrice \(M^2\) a donc \(N-p\) valeurs propres nulles.

On peut faire apparaître les valeurs propres de \(M^2\) dans le lagrangien au moyen d'une transformation linéaire au sein des champs \(\phi_1, \phi_2, \ldots, \phi_N\) ; il y a donc \(N-p\) bosons de masse nulle.

Nambu, Goldstone et quelques autres vers 1960 expliquaient les symétries approchées de la physique des particules par des restes de symétries exactes (du lagrangien) spontanément brisées, que le vecteur fondamental n'avait pas. Le théorème de Goldstone porte un coup fatal à cette explication et inhibe l'utilisation de la symétrie cachée en physique des particules,
cer ces bosons de masse nulle (donc de production peu dispersible) restaient introuvables dans la nature.

Mais subsistait quand même un soupçon :
- théorie de la supraconductivité + symétrie brisée
- expérimentalement : pas de boson de Goldstone (pas de phonons de grande longueur d'onde)

Pourquoi ? ... grâce à l'interaction coulombienne à longue portée qui élimine les modes phonons (ce n'est pas la même chose dans l'Helium suprafluide : la symétrie est brisée, mais il n'y a pas d'interaction coulombienne longue portée entre atomes, plutôt Van der Walls, ce qui autorise des bosons de Goldstone sous forme de phonons effectivement observés).

D'où l'idée :
symétrie brisée + interaction à longue portée (donc média
de par un boson de masse nulle, et pourquoi pas un boson de jauge Yang-Mills correspondant à une invariance de jauge locale)
pourrait bien à la fois
- diminuer les bosons de Goldstone
- donner une masse au boson de Yang-Mills
- tout en préservant la renormalisabilité propre à une théorie de jauge (ou plutôt au couplage minimal)

→ symétrie brisée cachée peut être viable pour une théorie de jauge.
Modèle de Higgs, la symétrie cachée

1964 : Higgs, et pas mal d'autres, essaient de chercher une invariance de jauge locale.

Initiation du thème de la supraconductivité, transposé à la théorie des champs de particules. On cherche un champ scalaire $\phi(x)$ (libre, auto-interagissant) interagissant avec le champ de jauge $A(x)$ en sorte de lui donner une masse effective ; ϕ doit donc être chargé, donc complexe.

Toujours sur le même exemple, du champ scalaire complexe

\[
\begin{align*}
L &= \partial \phi^* \partial^\mu \phi - V(\phi) \\
V(\phi) &= \frac{\lambda}{2!} (\phi^* \phi - \eta^2)^2
\end{align*}
\]

on construit un lagrangien pour ϕ et A au moyen de la prescription d'invariance locale $U(1)$, ou plutôt de couplage minimal :

\[
\begin{align*}
L &= (D^\mu \phi^*) D^\nu \phi - V(\phi) - \frac{\lambda}{4} F_{\mu \nu} F^{\mu \nu} \\
D^\mu &= \partial^\mu + i q A^\mu
\end{align*}
\]

Infinité d'équilibres stables: $\phi_0(x) = \eta e^{i \phi(x)}$.

Pour discuter, on en choisit un au hasard (!)

$\phi_0(x) = \eta$

et on va étudier la nature des petits mouvements au voisinage de cet équilibre :

$\phi(x) = \eta + \frac{1}{\sqrt{2}} \left(\chi_1(x) + i \chi_2(x) \right)$

t et τ réels, petits.

On développe la densité lagrangienne :

\[
L = \phi^* \partial^\nu \phi - i q A^\nu \partial^\mu \phi \partial^\nu \phi + \frac{1}{2} \eta^2 A^\mu A^\nu \phi^* \phi
\]

\[
- \frac{\lambda}{3!} (\phi^* \phi - \eta^2)^2 - \frac{\lambda}{4} F_{\mu \nu} F^{\mu \nu}
\]
En fonction des champs X_1 et X_2, les différents termes deviennent :

$$
\partial_{\mu} \Phi^* \partial^{\mu} \Phi = \frac{i}{2} \partial_{\mu} X_1 \partial^{\mu} X_1 + \frac{i}{2} \partial_{\mu} X_2 \partial^{\mu} X_2
$$

$$
-q \partial_{\mu} \Phi^* \partial^{\mu} \Phi = -iq \partial_{\mu} A_\mu \left(\partial^{\mu} X_1 + i \partial^{\mu} X_2 \right) = -i \frac{q}{\sqrt{2}} A_\mu \partial^{\mu} X_1 + \frac{q}{\sqrt{2}} A_\mu \partial^{\mu} X_2
$$

$$
\partial_{\mu} \Phi^* i q A^\mu = i \frac{q}{\sqrt{2}} A_\mu \partial^{\mu} X_1 + \frac{q}{\sqrt{2}} A_\mu \partial^{\mu} X_2
$$

$$
\Phi^* \Phi = \left(\eta^2 + \frac{1}{\sqrt{2}} X_2 \right)^2 + \frac{1}{2} X_2^2 = \eta^2 + \sqrt{2} \eta X_2 + \frac{1}{2} X_1^2 + \frac{1}{2} X_2^2
$$

C'est cet η^2 non null (donc Φ_0 non invariant de jauge) qui en facteur de $A_\mu A^{\mu}$ vient donner une masse au champ A_μ.

$$
V(\Phi) = \frac{\lambda}{3!} (\sqrt{2} \eta X_1 + \frac{1}{2} X_1^2 + \frac{1}{2} X_2^2)^2
$$

$$
= \frac{\lambda}{3!} (2 \eta^2 X_1^2 + \frac{1}{4} X_1^4 + \frac{1}{4} X_2^2 + \sqrt{2} \eta X_1^3 + \frac{1}{2} X_1^2 X_2^2 + \sqrt{2} \eta X_1 X_2^2)
$$

Donc la densité lagrangienne en fonction des champs X :

$$
L_X = -\frac{1}{4} F_{\mu \nu} F^{\mu \nu} + \frac{1}{2} \eta^2 A_\mu A^{\mu}
$$

$$
+ \frac{1}{2} \partial_{\mu} X_1 \partial^{\mu} X_1 - \frac{\lambda}{3} \eta^2 X_1^2
$$

$$
+ \frac{1}{2} \partial_{\mu} X_2 \partial^{\mu} X_2
$$

$$
+ \sqrt{2} q A_\mu \partial^{\mu} X_2 + q^2 \sqrt{2} \eta A_\mu A^{\mu} X_2 + \frac{q^2}{2} A_\mu A^{\mu} X_1^2 + \frac{q^2}{2} A_\mu A^{\mu} X_2^2
$$

$$
+ \frac{1}{4} X_1^4 + \frac{1}{2} X_1^2 X_2^2 + \frac{1}{4} X_2^4 + \sqrt{2} \eta X_1^3 + \sqrt{2} \eta X_1 X_2^2
$$

Soit maintenant un lagrangien pour

un boson vectoriel de masse $m^2 = 2 q^2 \eta^2$

$\mu^2 = \frac{2}{3} \lambda \eta^2$

$\mathbf{m}_2^2 = 0$ (boson de Goldstone)

le tout en interaction.

Donc encore un boson de Goldstone qui nous dérange....
mais tant va la puce à l’oreille qu’à la fin elle se casse.
Si on compte les degrés de liberté:

pour Q^f: \[
\begin{align*}
&\text{Yang-Mills} & \text{masse nulle} & 2 \text{ degrés} \\
&\text{Higgs} & \text{scalaires complexes} & 2 \text{ degrés}
\end{align*}
\]

pour Q^c: \[
\begin{align*}
&\text{massif} & 3 \text{ degrés} \\
&\text{scalaires réel massif} & 1 \text{ degré} \\
&\text{Goldstone} & \text{scalaires réel masse nulle} & 1 \text{ degré}
\end{align*}
\]

il y en a un qui s’est subrepticement introduit.

C’est le moment de se souvenir que du fait de l’invariance de jauge locale $U(1)$ de Q^f, la phase du champ de Higgs n’est pas un degré de liberté. En effet, où qu’on soit, on ne change rien aux conclusions physiques en "réalisant" le champ Q^f au moyen de la transformation interne

\[\varphi(x) \rightarrow \varphi'(x) = e^{-i \arg \varphi(x)} \varphi(x)\]

Autrement dit, dans le cas

\[\varphi(x) = \eta + \frac{1}{2} \chi_1(x) + \frac{i}{\sqrt{2}} \chi_2(x)\]

il existe toujours une transformation de jauge sur le champ Q^f qui permet d’annuler le champ χ_2

\[
\begin{align*}
\varphi(x) &= (\eta + \varphi(x)) e^{i \theta(x)} \\
A_\mu(x) &= B_\mu(x) - \frac{1}{\sqrt{2}} \partial_\mu \chi_2(x)
\end{align*}
\]

Il existe donc toujours une transformation de jauge permettant de ramener la densité lagrangienne à la forme (en faisant sauter les primes):

\[\ldots\]
\[\xi_{x_1, A} = - \frac{1}{4} \mathcal{F}^{\mu \nu} \mathcal{F}_{\mu \nu} + \frac{1}{2} 2 \eta^2 q^2 A_\mu A^\mu \\
+ \frac{1}{2} \partial_\mu x_1 \partial_\nu x_1 - \frac{1}{3} 2 \eta^3 \mathcal{F}_{\mu \nu} x_1 \\
+ \frac{1}{2} q^2 \eta A_\mu A^\mu x_1 + \eta^2 \eta A_\mu A^\mu x_1^2 + \frac{3}{4} x_1^4 + \frac{1}{2} \eta x_1^3 \]

\[\xi_{x_1, A} \] n'a plus du tout l'invariance U(1) ; la symétrie est cachée.

\[\eta \] est maintenant dans une jauge particulière.

Le boson de Goldstone a été proprement déjaugeé.

On a notre compte de degrés de liberté : \(2 \eta, 3 \text{ degrés} \)

\[
\begin{align*}
\eta_{x_1, A} &\sim \text{Yang-Mills} \\ &\sim \text{Higgs} x_1, \text{scadra}, \text{réel, massif} \\
&\sim \text{1 degré}
\end{align*}
\]

C'est la localité de la symétrie que l'on a cachée qui permet de faire en chaque point d'espace la transformation nécessaire pour rendre réel \(\eta \) et éliminer le boson de Goldstone \(x_2 \) (comparer avec symétrie globale cachée).

Pour une discussion des équations du mouvement correspondant à \(\xi_{x_2, A} \), voir Aitchison & Hay p. 205-211

- analogue (au plus rigoureux et complet) au traitement introductif du diamagnétisme (p. 289) et de la supraconductivité (p. 305)

- physiquement très instructif ; beaucoup plus concret que des considérations sur les densités lagrangiennes

- mais en contrepartie, beaucoup plus lourd ; tout l'intérêt du formalisme lagrangien est dans son assimilation naturelle des symétries.

L'invariance est cachée mais des vestiges en subsistent dans les relations entre masses : \(2 \eta^2 q^2, 2 \eta^3 q \)

et constantes de couplage : \(\sqrt{2} \eta q \), \(\frac{q^2}{2}, \frac{1}{q}, \sqrt{2} \eta \).

Toutes les jauge sont physiquement équivalentes, mais peuvent conduire à des lagrangiens effectifs formellement très différents. Le choix est affaire de commodité selon ce que l'on veut en faire.

- ici jauge U (pour unitaire) interprétation physique transparente (boson de Goldstone éliminé ; unitarité)

- autre choix jauge de t'Hooft, il subsiste des fantômes, mais permet de démontrer la renormalisabilité.
Bilan :
- en supracond., c'est le couplage A - matière (ensemble des paires de Cooper) qui donne une masse effective au photon.
- en théorie quantique des champs de particules élémentaires, on veut un champ de jauge A (en fait dans la nature, ce ne sera pas une jauge $U(1)$, contrairement à l'exemple pédagogique) qui soit massif même si libre (i.e. sans la matière dont il est l'intermédiaire d'interaction), c'est à dire même pour un état à un seul boson A :

$|a^+ \phi^+ \rangle$

Pour cela, on introduit donc des champs supplémentaires (sous-jacents, les champs de Higgs) (ϕ et ϕ^* dans notre exemple pédagog.) qui en interaction avec A génèrent les "courants d'écran" correspondants, qui donnent une masse effective et à A et une longueur d'écran portée $\lambda = \frac{1}{m_A}$

Le vide physique (pas du tout vide, il vaut mieux l'appeler état fondamental de l'univers), bourré de bosons de Higgs ($\phi(0) \neq 0$) éduleera l'interaction (ici "électromagnétique" $U(1)$) pour en réduire la portée.

Pour une interaction fondamentale, l'effet ressenti dépend du champ de Higgs qui lui est associé :
- C.D. ϕ ? pas de champs de Higgs
- E.D. ϕ ? faible il en faut

"The concept of vacuum screening current is possibly as fundamental as that of the displacement current introduced by Maxwell". Aitchison & Hey, p.202.
Dans le cas de champs quantiques, et comme on a tout lieu d'espérer que l'équilibre classique constitue une bonne approximation du fondamental quantique, on cherchera des champs de Higgs tels que

\[\langle \Omega | \phi^+(x) \phi(x) | \Omega \rangle = \eta \neq 0 \]

où \(| \Omega \rangle \) est l'état fondamental, pas du tout vide (Nambu 1960).

Revenons à notre exemple pré-quantique : un équilibre \(\phi_0(x) = \eta \neq 0 \) n'a plus du tout l'invariance par rapport aux transformations locales \(U(1) \) qui caractérisait son lagrangien.

\[\to \text{symétrie cachée (Coleman), c'est-à-dire} \phi_0(x) \text{ que l'on voit} \]

plutôt que symétrie spontanément brisée, car de toute façon aucun terme non invariant n'a été ajouté au lagrangien ; toutes les phases sont encore aussi douces, mais ça n'est plus du tout évident.

Vivant dans un immense ferro-magnétique (assemblée de moments magnétiques tous alignés dans la même mais par ailleurs quelconque direction) ; dans la mesure de ses modestes crédits et de la crise de l'énergie il lui faudra une grande aptitude au fantasme pour imaginer que les lois de l'électro-dynamique puissent être invariantes par rotation.

Le problème était le même pour les premiers chinois à jouer avec un (seul) barreau aimanté dans le champ terrestre ; ce n'est qu'après avoir obtenu ces crédits pour un deuxième barreau qu'ils pouvaient mettre en évidence une invariance par rotation.

Les physiciens des particules du XXe siècle vivent dans un gigantesque supraconducteur faible.
Interrogation actuelle : le champ de Higgs
- n'est-il qu'une sorte d'état lié de champs élémentaires connus (comme les paires de Cooper sont à peu près des états liés d'électrons) ?
- ou un nouveau champ élémentaire lui même ?

Important : ne pas nourrir l'illusion que l'on peut obtenir l'équilibre \(\Phi_0 (x) = 0 \) par un calcul perturbatif à partir du "vécle" \(\Phi (x) = 0 \); \(\Phi \) doit être fini. L'idéal serait d'obtenir la fondamentale \(\Phi_0 (x) \neq 0 \) à partir de champs et interactions fondamentales, plutôt que de la poser a priori (comme la théorie B.C.S. produit les paires de Cooper, nécessaires à la phase supracond.)